Appendix: Calculations

The intervals of the just intonation scale produce the most pleasing resultant and reinforcement pitches. These natural intervals also produce the smallest number of resultant notes and are said to be "consonant."

Columns (1) and (2), respectively, show the relationships of notes to the tonic for both the Just intonation scale and for the Equal tempered scale. In the Equal tempered scale each of the twelve semitones has a frequency which is the twelfth root of two, $2^{(1/12)}$, or approximately 1.0595, times the frequency of the next lower semitone.

Columns (3) and (4) calculate frequencies for a sample scale. For tonic at middle C equal to 261.62557, notice that the sixth, A, is 440 Hz only for the Equal tempered scale. Sounded together, A=436 and A=440 will produce four audible "beats" per second.

Columns (5) and (6) both show how much an Equal tempered pitch must be adjusted or bent, up or (down), to get to the Just intonation pitch. Memorize Pitch Bend adjustments, as shown in major and minor scale context, from the staves in the middle of page 13.

		(1)	(2)		(3)	(4)	(5)	(6)	
							(4) - (3)		
			-		Sample Scale		log [(1)/(2)] ÷ _ log 2^(1/1200)		
	<u>Just</u> ratio	<u>scale</u> decimal	Equal tempered scale decimal		Just scale Hz	Equal tempered scale Hz	difference ("Beats") Hz	Pitch Bend in cents	5
			prev.note x 2 [^] (1/12)						
octave	2	2.0000	2.0000	C5	523.3	523.3	0.0	0	octave
seventh	15/8	1.8750	1.8877	В4	490.5	493.9	(3.3)	(12)	seventh
minor 7th	9/5	1.8000	1.7818	A4#	470.9	466.2	4.8	18	minor 7th
sixth	5/3	1.6667	1.6818	A4	436.0	440.0	(4.0)	(16)	sixth
minor 6th	8/5	1.6000	1.5874	G4#	418.6	415.3	3.3	14	minor 6th
fifth dim 5th	3/2 45/32	1.5000 1.4063	1.4983 1.4142	G4 F4#	392.4 367.9	392.0 370.0	0.4 (2.1)	2 (10)	fifth dim 5th
fourth third	4/3 5/4	1.3333 1.2500	1.3348 1.2599	F4 E4	348.8 327.0	349.2 329.6	(0.4) (2.6)	(2) (14)	fourth third
minor 3d second	6/5 9/8	1.2000 1.1250	1.1892 1.1225	D4# D4	314.0 294.3	311.1 293.7	2.8 0.7	16 4	minor 3d second
minor 2d unison	25/24 1	1.0417 1.0000	1.0595 1.0000	C4# C4	272.5 261.6	277.2 261.6	(4.7) 0.0	(29) 0	minor 2d unison

All decimals are rounded here for display. © 2003 by David A. Schwartz