Rubik's Cube in APL

by Gary Logan

Over a quarter century ago, I memorized a Rubik's
cube solution from "The Simple Solution to Rubik's
Cube" by James G. Nourse.

In a nutshell, this solution is in five steps:
Top edges
Top corners
Middle edges
Bottom corners
Bottom edges

This took me a few months. The next step, of
course, was to model the solution on a computer.
More to the point, I set out to write a solution in
the language I knew best. APL.

What is needed is a way to represent the physical
turns of the cube faces, a way to determine the
current state of the cube and a way to display the
state as the solution progresses.

The first attempts to define the face turns were not
very productive. An attempt to impose a coordinate
system was soon discarded. Then a multi-dimensional
array approach was discarded. Both attempts were
tossed for the same reason: they lacked simplicity.

The next approach turned out to be successful beyond
my expectations. It developed from a very low tech
idea. I wanted to number each of the fifty-four
squares and represent the solved cube by a vector of
integers.

From adhesive tape, 54 pieces were cut. Large enough
to number with a pen yet small enough to still see the
color of the square. Each of the pieces were attached
to the cube and the squares numbered from 1 to 54.

The number order is arbitrary but the scheme chosen
was to number each face from left to right and top to
bottom. The faces to number were chosen in Up, Left,
Front, Right, Back, Down order. All this numbering was
done on a solved cube. See Figure 1. below.

Three turns for each face were defined, along with
three rotations of the entire cube. This led to

twenty-one definitions with the following names:

up un u2 1p 1n 12 fp fn £2 rp rn r2 bp bn b2
dp dn d2 190 r90 rl180

Each move was defined by starting with a solved cube,
making the move and writing down the numbers on each

Page 1

Rubik's Cube in APL

face. In this way, the 21 move vectors form a matrix
with 21 rows and 54 columns.

The following expression will define the move, fp, of
the front face in a positive direction.

gse«s[m[7;]]

Where s 1s the cube state and m is the matrix of
moves. In words, the new state is assigned the current
state indexed by a row of the move matrix.

This 1s the only computer code needed to make the
moves necessary to solve the cube.

Most cube solutions use a sequence of basic face turns
and cube rotations to achieve specific results along
the way to a solution. Any sequence of moves can be
defined in the same way the basic moves were defined.
The solution under discussion uses fifteen defined
sequences. For completeness, the names are:

s21 s22 s23 s31 s32 s33 s41 s42 s43 s44 s51 s52 s53
s54 s55

These defined sequences added fifteen rows to the move
matrix. No other moves are necessary to solve the
cube. For example, s42 is defined by

fn dn rn dp rp fp dp
and executed by the expression:

ses[m[29;]]

It is very nice that an arbitrary sequence of moves
can be executed with the same expression used for a
simple face turn.

We now discuss an overview of the five steps to the
solution. The first three steps are done one target
square at a time. The last two steps deal with a set
of cubes as a group.

Top edges: S1

Rotate the cube until the square at position 8 is
incorrect. Determine target square (2,4,6 or 8).
Locate the target square which can be in any one of 24
places. Use a matrix, tabl, with 24 rows that has the
possible places for the target square in the first two
columns and basic moves in the remaining columns to
place the square where it belongs. For the first step
no defined sequences are needed. Suppose the target
square is in position 33, we find a row of tabl with
33r2fnr2 and place the square with moves r2 fn r2.

Page 2

Rubik's Cube in APL

Top corners: S2

Rotate the cube until the square at position 9 is
incorrect. Determine the target square (1,3,7 or 9).
Locate the target square which can be in 24 places (8
corners, 3 sguares per corner). Matrix tab2 contains
the moves to solve each possibility. The basic
strategy is to move the target square to the lower
right corner, then choose s21, s22 or s23 to move the
square to position 9. The choice depends on the
position of the target square.

Middle edges: S3

Try to find one of the target squares (15,24,33 or 42)
on the bottom layer and use the proper row of tab3 to
place the square in position 24. If no target sqguare
is on the bottom layer, use s33 to drop it down.
Matrix tab3 has 8 rows to handle each possibility for
the target square on the bottom layer. The basic
strategy is to move the square from position 26 to 24
with g31 or from position 51 to 24 with s32.

Bottom corners: S4

This step has two parts, first the corners are
correctly placed then oriented in part two. With a
move of the down face the corners can be aligned such
that exactly two or four corners correct. [At this
point, there are 15,552 cases for the bottom layer.]
When two corners are correct, use s4l1 to exchange
adjacent corners or s42 to exchange diagonal corners.
Moves are in tab4l. [Now 2,592 bottom cases remain.]

The corners are oriented with s43 and s44. There are

7 distinct patterns formed by the bottom corner colors
with 4 rotations of each pattern. Matrix tab42 has 28

rows to deal with each possibility.

Bottom edges: S5
There are 96 possible cases and matrix tab5 has
solutions for each.

At this point, any scrambled cube is solved with the
steps described. The key APL programs to do this are
in the appendix below. The comments have been removed
to save space and the solution tables are not shown.

The third objective is to display the cube on the
screen and provide a way to control the moves leading
to a solution. This feature depends on the screen
interaction facility provided by the various APL
vendors and will not be discussed for that reason.
Except to say, 1t was easy to make a one-to-one
correspondence with the cube state and the color of
the fields defined on the screen.

Page 3

Rubik's Cube in APL

The programs were written as a personal exercise with
simplicity of solution in mind, not performance. It

takes around 49 seconds to scramble and solve the cube
10,000 times. The chip is a ten year old Pentium III.

Figure 1.
Back
45 44 43
42 41 40
39 38 37
Left Up Right

16 13 10 01 02 03 30 33 36
17 14 11 04 05 06 29 32 35
18 15 12 07 08 09 28 31 34

Front

19 20 21

22 23 24

25 26 27

Down

46 47 48

49 50 51

52 53 54

Appendix:

MIX
execute tabdescribe[?16p18;112]

Sl;a

LO:

forward

a«(s[8 6 2 4]#8 6 2 4)11

+(a>4) /0

¢, (4 4p 190 r180r90 ') [a;]

a« (24 2ttabl)Aa.=2 0%s1(8 6 2 4) [a]
execute 5 2p 101,aftabl

->L0

S2;a

LO:

forward

a«(s[9 7 3 1129 7 3 1)11

+(a>4) /0

¢, (4 4p r90 190 r180'") [a;]

a« (24 2ttab2)a.=2 0%s1(9 7 3 1) [a]
execute 4 3p 12%,aftab2

->L0

S3;a

LO:

forward

a« (24 33 42 15es[be]l)1l

Page 4

Rubik's Cube in APL

»(a=5) /L1

¢, (4 4p 190 r180r90 ') [a;]
a«s[bel1(24 33 42 15) [a]
execute 2 3p 671,tab3[a;]

-»L0

Ll:

forward

a«(s[24 33 42 15]#24 33 42 15)11
-+ (a=5)/0

¢, (4 4p 190 r180r90 ') [a;]
s33

L0

S4;a

forward

a«46 48 54 521s[18 25 46 27 34 48 36 43 54 45 16 52]
a« (24 41tabdl)ar.=411 0% (a<5b)/a

execute 3 4p 121,aftab4l

a«4 4pd6 48 54 52 48 54 52 46 54 52 46 48 52 46 48 54
a«v/s [tabdbc]lAa.=a

execute 4 4pl6t,aftab4d?2

S5;a

forward

a«l 0%be1ils [bel]

a« (96 8ttab5)A.=a
execute 5 4p 2071,aftabb
forward

execute rA; A
$OFX ((T1tprA)t'AY), [OIO] XA

forward
¢, (s[23]=14 23 32 41)/#4 4p'190 r90 rl80"

Page 5

